Technische Universität München
Nanoroboter verwandeln Stammzellen in Knochenzellen
TECHNISCHE UNIVERSITÄT MÜNCHEN
PRESSEMITTEILUNG
Neue Methode zur gezielten Produktion von bestimmten Körperzellen entwickelt
Nanoroboter verwandeln Stammzellen in Knochenzellen
- Durch mechanische Stimulation lassen sich Stammzellen in Knochenzellen verwandeln.
- In einem System mit Nanorobotern und Laserlicht haben Forschende gezeigt, dass eine zuverlässige Transformation möglich ist.
- Im Prinzip lassen sich so auch Herz- und Knorpelzellen herstellen.
Erstmals ist es Forschenden der Technischen Universität München (TUM) gelungen, Stammzellen mithilfe von Nanorobotern derart präzise zu stimulieren, dass sie sich gezielt und zuverlässig in Knochenzellen verwandeln. Die Roboter drücken dafür von außen auf bestimmte Stellen in der Zellwand. Die neue Methode bietet Chancen für künftige, schnellere Therapien.
Die Nanoroboter von Prof. Berna Özkale Edelmann bestehen aus winzigen Goldstäbchen und Kunststoffketten. Mehrere Millionen davon befinden sich in einem nur 60 Mikrometer kleinen Gelkissen zusammen mit einigen wenige menschlichen Stammzellen. Angetrieben und gesteuert durch Laserlicht stimulieren die wie kleine Kügelchen aussehenden Roboter die Zellen mechanisch, indem sie Druck ausüben.
“Wir erhitzen das Gel lokal und können mit unserem System die Kräfte exakt bestimmen, mit denen die Nanoroboter auf die Zelle drücken – und sie so anregen”, erläutert die Professorin für Nano- und Mikrorobotik an der TUM. In der Zelle stößt diese mechanische Stimulation biochemische Prozesse an. Ionenkanäle verändern ihre Eigenschaften, Proteine werden aktiviert, darunter eines, das vor allem für die Bildung von Knochen wichtig ist.
Herz- und Knorpelzellen: Das richtige Belastungsmuster finden
Geschieht die Stimulation in richtigem Rhythmus und mit der richtigen (geringen) Kraft, lässt sich eine Stammzelle innerhalb von drei Tagen sehr zuverlässig so triggern, dass sie sich binnen drei Wochen in eine Knochenzelle entwickelt.
„Das entsprechende Belastungsmuster lässt sich auch für Knorpel- und Herzzellen finden“, ist sich Berna Özkale Edelmann sicher. „Das ist fast wie im Fitness-Center: Wir trainieren die Zellen für einen ganz speziellen Einsatzbereich. Jetzt müssen wir nur noch herausfinden, welches Belastungsmuster zum jeweiligen Zelltyp passt“, sagt die Leiterin des Microbiotic Bioengineering Labs an der TUM.
Mechanische Kräfte bahnen die Transformation zur Knochenzelle
Um Knochenzellen herzustellen, bedient sich das Forschungsteam sogenannter mesenchymaler Stammzellen. Sie gelten als „Reparatururzellen“ im Körper, sind etwa 10 bis 20 Mikrometer groß und generell in der Lage, sich beispielsweise in Knochen-, Knorpel- und Muskelzellen weiterzuentwickeln.
Die Herausforderung: Die Transformation in ausdifferenzierte Zellen ist komplex und lässt sich bisher schwer steuern. „Wir haben eine Technologie entwickelt, mit der man in einer dreidimensionalen Umgebung sehr exakt Kräfte auf die Zelle einwirken lassen kann“ sagt TUM-Wissenschaftlerin Özkale Edelmann, „das ist in der Forschung bisher einmalig.“ Die Forschenden gehen davon aus, dass sich mit dieser Methode selbst Knorpel- und Herzzellen aus menschlichen Stammzellen herstellen lassen.
Automatisierung ist der nächste Schritt
Für eine Therapie benötigen Ärztinnen und Ärzte letztlich weit mehr ausdifferenzierte Zellen – etwa eine Million. „Deshalb ist es im nächsten Schritt wichtig, unsere Produktion zu automatisieren, um schneller mehr Zellen herstellen zu können“, sagt Prof. Özkale Edelmann.
Zusatzinformationen für Redaktionen:
Fotos zum Download: https://mediatum.ub.tum.de/1836403
Mehr Informationen
Forscher Cheng Wang erläutert, wie sich Stammzellen durch Impulse durch Nanoroboter in Knochenzellen verwandeln (englisch): https://www.youtube.com/watch?v=gP8WolgBV54
Die Forscherin Nergishan Iyizan aus dem Microbiotic Bioengineering Lab der Technischen Universität München erläutert, wie sich biochemische Prozesse in den Zellen durch mechanische Stimulation verändern: https://www.youtube.com/watch?v=pjfSTh-Nxwc
Forscher Chen Weng aus dem Microbiotic Bioengineering Lab der Technischen Universität München zeigt das neue System aus Nanorobotern, das Stammzellen durch Stimulation in Knochenzellen verwandeln kann: https://www.youtube.com/watch?v=mNl4Ga5pDkY
Publikationen
Photothermally Powered 3D Microgels Mechanically Regulate Mesenchymal Stem Cells Under Anisotropic Force; Chen Wang, Nergishan Iyisan, Philipp Harder, Valentin H. K. Fell, Viktorija Kozina, Hendrik Dietz, Olivia M. Merkel, and Berna Özkale; Advanced Materials, 9-2025; https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202506769
Hydrostatic Pressure Induces Osteogenic Differentiation of Single Stem Cells in 3D Viscoelastic Microgels; Nergishan İyisan, Fernando Rangel, Leonard Funke, Bingqiang Pan, Berna Özkale; https://onlinelibrary.wiley.com/doi/10.1002/smsc.202500287
Wissenschaftlicher Kontakt:
Prof. Berna Özkale Edelmann
Professur für Nano- and Microrobotik
Technical University of Munich (TUM)
berna.oezkale@tum.de
Kontakt im TUM Corporate Communications Center:
Andreas Schmitz
0162-27 46 193
andreas.schmitz@tum.de
Die Technische Universität München (TUM) ist mit rund 700 Professuren, 53.000 Studierenden und 12.000 Mitarbeitenden eine der weltweit stärksten Universitäten in Forschung, Lehre und Innovation. Ihr Fächerspektrum umfasst Informatik, Ingenieur-, Natur- und Lebenswissenschaften, Medizin, Mathematik sowie Wirtschafts- und Sozialwissenschaften. Sie handelt als unternehmerische Universität und sieht sich als Tauschplatz des Wissens, offen für die Gesellschaft. An der TUM werden jährlich mehr als 70 Start-ups gegründet, im Hightech-Ökosystem München ist sie eine zentrale Akteurin. Weltweit ist sie mit dem Campus TUM Asia in Singapur sowie Büros in Brüssel, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinderinnen und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006, 2012 und 2019 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings wird sie regelmäßig als beste Universität in der Europäischen Union genannt.