You might also be interested in:

intec presents ARGUS® G.fast testers for 212 MHz and new accessories at ANGA COM

Lüdenscheid (ots) - intec, the leading European supplier of telecommunications measuring technology, is once ...

Anniversary marks record 3.2 billion printed products / Onlineprinters celebrates 15 years of e-commerce

Fürth (ots) - The Onlineprinters Group celebrates its 15th anniversary with record breaking production ...

C-V2X contributes to safer roads for everyone / 5GAA live demo event in Berlin

Berlin (ots) - Smart mobility technology, which we have been developing over the years, is now a reality. ...

All Releases
Subscribe to Technische Universität München

04.04.2019 – 10:53

Technische Universität München

Black nanoparticles slow the growth of tumors

TECHNICAL UNIVERSITY OF MUNICH

Corporate Communications Center

phone: +49 89 289 23325 - email: presse@tum.de - web: www.tum.de

This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/35324/

NEWS RELEASE

Black nanoparticles slow the growth of tumors

Melanin as a new diagnosis and treatment tool for tumors

The dark skin pigment melanin protects us from the sun's damaging rays by absorbing light energy and converting it to heat. This could make it a very effective tool in tumor diagnosis and treatment, as demonstrated by a team from the Technical University of Munich (TUM) and Helmholtz Zentrum München. The scientists managed to create melanin-loaded cell membrane derived nanoparticles, which improved tumor imaging in an animal model while also slowing the growth of the tumor.

Nanoparticles are considered a promising weapon in the fight against tumors due to the fact that tumor tissue absorbs them more readily than healthy cells because their vascular system is more permeable. A good example is provided by outer membrane vesicles (OMVs), which are basically small bubbles surrounded by bacterial membrane. These 20- to 200-nanometer particles are of interest because they are biocompatible, biodegradable and can be easily and inexpensively produced in bacteria, even in large volumes. Once loaded with medicinal active agents, they are easy to administer.

Nanoparticles carrying a black cargo

The huge potential of OMVs in tumor diagnosis and treatment has been demonstrated by Prof. Vasilis Ntziachristos, Professor of Biological Imaging at TUM, and his team. Their work builds on the characteristic properties of OMVs and melanin.

Dr. Vipul Gujrati, first author of the study, explains the principle: "Melanin absorbs light very readily - even in the infrared spectrum. We use precisely this light in our optoacoustic imaging technique for tumor diagnosis. It simultaneously converts this absorbed energy into heat, which is then emitted. Heat is also a way to combat tumors - other researchers are currently exploring this method in clinical trials."

Optoacoustics, a method which has been significantly advanced by Ntziachristos, combines the benefits of optical imaging and ultrasound technology. Weak laser pulses gently heat the tissue, causing it to briefly expand very slightly. Ultrasound signals are produced when the tissue contracts again as it cools down. The measured signals vary depending on the tissue type. The scientists record them with special detectors and "translate" them into three-dimensional images. Sensor molecules or probes (such as OMVs) can improve the specificity and accuracy of the technique even further.

Heat build-up reduces tumor growth

The scientists initially had to overcome a problem specific to melanin: It is not very water-soluble and therefore difficult to administer. This is where the OMVs came into play. The researchers engineered bacteria in such a way that they produce melanin and store it in their membrane derived nanoparticles. They then tested the black nanoparticles in mice which had tumors in their lower back region. The particles were injected directly into the tumor, which was excited with infrared laser pulses as part of the optoacoustic procedure.

OMVs proved to be suitable sensor probes for this diagnosis technique because they delivered sharp, high-contrast images of the tumor. They are also well-suited to photothermal therapy approaches, where the tumor tissue is heated with stronger laser pulses in order to kill the cancer cells. The melanin in the nanoparticles caused the temperature of the tumor tissue to rise from 37 °C to up to 56 °C. Control tumors with no melanin only reached a maximum temperature of 39 °C. In the ten days following the treatment, the tumors grew at a significantly slower rate than those in the control group that had not received melanin OMVs. This heat effect was amplified by another positive effect of the particles: By causing a slight non-specific inflammation in the tumor tissue, the immune system was triggered to attack the tumor.

"Our melanin nanoparticles fit into the new medical field of theranostics - where therapy and diagnostics are combined. This makes them a highly interesting option for use in clinical practice," says Ntziachristos. The scientists will now develop their OMVs further to bring them into clinical use in the future.

Publication:

Vipul Gujrati, Jaya Prakash, Jaber Malekzadeh-Najafabadi, Andre Stiel, Uwe Klemm, Gabriele Mettenleiter, Michaela Aichler, Axel Walch and Vasilis Ntziachristos: Bioengineered bacterial vesicles as biological nanoheaters for optoacoustic imaging, Nature Communications, March 7, 2019, DOI: 10.1038/s41467-019-09034-y

https://www.nature.com/articles/s41467-019-09034-y

Contact:

Dr. Vipul Gujrati

Scientist at the Chair of Biological Imaging

Technical University of Munich

Tel.: +49 (0)89 3187 1244

vipul.gujrati@tum.de

More information:

Prof. Vasilis Ntziachristos holds a chair at TUM. He is research group leader at the Central Institute for Translational Cancer Research at TUM (TranslaTUM) and Director of the Institute of Biological and Medical Imaging at Helmholtz Zentrum München.

- Research group headed by Vasilis Ntziachristos 
  https://www.cbi.ei.tum.de/en/labs/  
- Profile of Vasilis Ntziachristos 
  http://www.professoren.tum.de/en/ntziachristos-vasilis/   
The Technical University of Munich (TUM) is one of Europe's leading research
universities, with around 550 professors, 42,000 students, and 10,000 academic
and non-academic staff. Its focus areas are the engineering sciences, natural
sciences, life sciences and medicine, combined with economic and social
sciences. TUM acts as an entrepreneurial university that promotes talents and
creates value for society. In that it profits from having strong partners in
science and industry. It is represented worldwide with the TUM Asia campus in
Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, San Francisco,
and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel, Carl von
Linde, and Rudolf Mößbauer have done research at TUM. In 2006 and 2012 it won
recognition as a German "Excellence University." In international rankings, TUM
regularly places among the best universities in Germany. 

All Releases
Subscribe to Technische Universität München
  • Printable version
  • PDF version