All Stories
Follow
Subscribe to Technische Universität München

Technische Universität München

Multiple Sklerose: Cholesterin-Kristalle verhindern Reparatur im Zentralnervensystem

TECHNISCHE UNIVERSITÄT MÜNCHEN

Corporate Communications Center

Tel.: +49 89 289 22562 - E-Mail: presse@tum.de - Dieser Text im Web: https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34392/

PRESSEMITTEILUNG

Multiple Sklerose: Cholesterin-Kristalle verhindern Reparatur im Zentralnervensystem

Fettstoffwechsel steuert Regeneration im zentralen Nervensystem

Multiple Sklerose (MS) ist eine chronisch-entzündliche Erkrankung des Zentralnervensystems, bei der Immunzellen fettreiche Myelinscheiden der Nervenfasern abbauen. Der Wiederaufbau intakter Myelinscheiden ist notwendig, damit sich Patienten von ihren Behinderungen erholen. Aber die Fähigkeit zur Regeneration nimmt mit dem Alter ab. In "Science" liefert ein Team um Prof. Mikael Simons von der Technischen Universität München (TUM) dafür eine mögliche Erklärung: Fettmoleküle aus der Myelinscheide, die nicht rasch aus Fresszellen abtransportiert werden, können eine chronische Entzündung auslösen. Dies verhindert den Wiederaufbau der Myelinhüllen. Zudem beschreibt das Team in einer weiteren Publikation Zellen, die nur dann erscheinen, wenn eine Myelinscheide neu gebildet wird.

Für die Funktion des Zentralnervensystems spielt die Myelinscheide eine entscheidende Rolle. Es handelt sich um eine spezielle, besonders fettreiche Membran, die Nervenfasern so isoliert, dass elektrische Signale schnell und effizient weitergeleitet werden. Wird diese Hülle beschädigt, kann es zu Ausfallerscheinungen wie Lähmungen kommen. Bei MS kommt es im Laufe der Erkrankung an vielen verschiedenen Stellen im Gehirn oder Rückenmark durch körpereigene Immunzellen zu einer Zerstörung der Myelinscheide. Die Regeneration der Myelinscheide ist bei MS grundsätzlich möglich, aber in den meisten Fällen unzureichend.

Einer der Gründe dafür sind vermutlich chronische Entzündungen, die an den beschädigten Stellen entstehen. Das Team um Mikael Simons, Professor für Molekulare Neurobiologie an der TUM, hat herausgefunden, dass nach der Zerstörung der Myelinscheide kristallines Cholesterin - ähnlich wie bei der Arteriosklerose - eine anhaltende Entzündung auslöst, die eine Regeneration verhindert.

Gefährliche Kristalle

"Myelin hat einen sehr hohen Anteil an Cholesterin", erläutert Prof. Simons. "Wenn Myelin zerstört wird, muss das Cholesterin, das dabei freigesetzt wird, aus dem Gewebe beseitigt werden." Diese Aufgabe erledigen Fresszellen, oder auch Mikroglia und Makrophagen genannt. Sie nehmen die beschädigte Myelinscheide in das Innere der Zelle auf, verdauen diese und befördern die unverdaulichen Reste über Transportmoleküle wieder aus der Zelle heraus. Häuft sich jedoch in kurzer Zeit zu viel Cholesterin in der Zelle an, kann es passieren, dass Kristalle gebildet werden. Anhand eines Mausmodells konnten Simons und sein Team die verheerenden Folgen des kristallinen Cholesterins zeigen: Es aktiviert in den Fresszellen ein sogenanntes Inflammasom, dass unter anderem dafür sorgt, dass Entzündungsmediatoren freigesetzt und mehr Immunzellen angelockt werden. "Ganz ähnliche Probleme treten auch bei Arteriosklerose auf, nur eben nicht im Gehirngewebe, sondern in den Blutgefäßen", sagt Simons.

Wie gut die Mikroglia und Makrophagen ihre Aufgabe erfüllten, hing nicht zuletzt vom Alter der Versuchstiere ab: Je älter diese waren, desto schlechter funktionierte der Abtransport von Cholesterin und desto stärker waren die chronischen Entzündungen. "Wenn wir die Tiere mit einem Medikament behandelten, das den Abtransport von Cholesterin fördert, gingen die Entzündungen zurück und die Myelinscheiden wurden regeneriert", sagt Mikael Simons. Als nächstes möchten er und sein Team untersuchen, ob dieser Mechanismus sich für Therapien von MS-Patienten nutzen lässt, um die Regeneration zu fördern.

Neu entdeckte Zellen zeigen Reparatur an

Eine entscheidende Voraussetzung für die Entwicklung von Therapien zur Förderung der Reparatur ist ein besseres Verständnis der Myelinbildung. Eine weitere Studie unter der Leitung von Prof. Simons und Prof. Christine Stadelmann vom Institut für Neuropathologie der Universität Göttingen, die kürzlich in "Science Translational Medicine" erschienen ist, liefert dazu wichtige neue Erkenntnisse. Die Wissenschaftlerinnen und Wissenschaftler entdeckten einen neuen Zelltyp, eine besondere Form der sogenannten Oligodendrozyten. Sie gehören zu den Gliazellen im Gehirn, die für die Myelinisierung verantwortlich sind.

"Wir nehmen an, dass die von uns entdeckten BCAS1-positiven Oligodendrozyten eine Zwischenstufe in der Entwicklung dieser Zellen darstellen. Sie sind nur relativ kurze Zeit nachweisbar - nämlich dann, wenn gerade Myelin gebildet wird", sagt Mikael Simons. In menschlichen Gehirnen sind sie beispielsweise besonders stark in Neugeborenen nachweisbar, wenn die Myelinisierung besonders ausgeprägt ist. Bei Erwachsenen verschwinden diese Zellen zum Großteil, können aber neu gebildet werden, wenn die Myelinscheide beschädigt wird und neuaufgebaut werden muss.

"Wir hoffen, dass die BCAS-1 positiven Zellen uns bei der Suche nach neuen Medikamenten zur Regeneration von Myelin helfen können", sagt Prof. Simons. So könnte man jetzt gezielt nach Substanzen suchen, die die Bildung dieser Zellen anregen. Darüber hinaus könnte man sie nutzen, um noch genauer zu verstehen, wann im Laufe des Lebens eines Menschen an welchen Stellen Myelinscheiden neu gebildet werden.

Die beiden Forschungsprojekte entstanden in enger Zusammenarbeit mit Wissenschaftlerinnen und Wissenschaftlern am Max-Planck-Institut für Experimentelle Medizin in Göttingen. Prof. Simons ist zudem Mitglied im Exzellenzcluster SyNergy und am Forschungszentrum für neurodegenerative Erkrankungen (DZNE) angestellt.

Publikationen:

L. Cantuti-Castelvetri, D. Fitzner, M. Bosch-Queralt, M.-T. Weil, M. Su, P. Sen, T. Ruhwedel, M. Mitkovski, G. Trendelenburg, D. Lütjohan, W. Moebius, M. Simons: Defective cholesterol clearance limits remyelination in the aged central nervous system, Science (2018). DOI:

10.1126/science.aan4183

M. K. Fard, F. van der Meer, P. Sanchez, L. Cantuti-Castelvetri, S. Mandad, S. Jaekel, E. F. Fornasiero, S. Schmitt, M. Ehrlich, L. Starost, T. Kuhlmann, C. Sergiou, V.Schultz, C. Wrzos, W. Brueck, H. Urlaub, L. Dimou, C. Stadelmann, M. Simons: BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions, Science Translational Medicine (2017). DOI: 10.1126/scitranslmed.aam7816

Kontakt:

Prof. Dr. Mikael Simons

Technische Universität München

Lehrstuhl für Molekulare Neurobiologie

Tel: +49-(0)89 440046495

msimons@gwdg.de

http://www.neuroscience.med.tum.de/index.php?id=5

Die Technische Universität München (TUM) ist mit mehr als 550 Professorinnen und
Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 41.000
Studierenden eine der forschungsstärksten Technischen Universitäten Europas.
Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften,
Lebenswissenschaften und Medizin, verknüpft mit Wirtschafts- und
Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die
Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie
von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem
Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San
Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und
Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006
und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen
Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands.
www.tum.de
More stories: Technische Universität München
More stories: Technische Universität München
  • 03.01.2018 – 09:30

    20-Euro-Gedenkmünze: Zum Hundertsten von TUM-Professor Ernst Otto Fischer

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22562 - E-Mail: presse@tum.de - Dieser Text im Web: https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34394/ PRESSEMITTEILUNG Gedenkmünze zu Ehren des Chemie-Nobelpreisträgers Fischer Zum Hundertsten von TUM-Professor Ernst Otto Fischer Ernst Otto Fischer, ...

  • 27.12.2017 – 12:00

    Double strike against tuberculosis

    TECHNICAL UNIVERSITY OF MUNICH Corporate Communications Center phone: +49 89 289 22562 - email: presse@tum.de - web: www.tum.de This text on the web: https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34383/ NEWS RELEASE Beta-lactone inhibits mycomenbrane biosynthesis and potentiates antibiotics Double strike against tuberculosis In search of new strategies against life-threatening tuberculosis infections, a team from the Technical University of Munich ...

  • 27.12.2017 – 11:25

    Doppelschlag gegen Tuberkulose

    TECHNISCHE UNIVERSITÄT MÜNCHEN Corporate Communications Center Tel.: +49 89 289 22562 - E-Mail: presse@tum.de - Dieser Text im Web: https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/34383/ PRESSEMITTEILUNG Beta-Lakton stört Mykomembran-Biosynthese und verstärkt Antibiotikawirkung Doppelschlag gegen Tuberkulose Auf der Suche nach neuen Strategien gegen lebensgefährliche Tuberkulose-Infektionen hat ein Team der Technischen Universität München ...